Que es quimiotaxis

viernes, 23 de julio de 2010

FAGOCITOSIS

FAGOCITOSIS

La fagocitosis (del griego -phagos, 'el que come', kytos, 'célula'), es un tipo de endocitosis por el cual algunas celulas (neutrófilos y macrófagos) rodean con su membrana plasmatica a un antígeno y lo introducen al interior celular. Esto se produce gracias a la emisión de pseudopodos alrededor de la partícula o microorganismo hasta englobarla completamente y formar alrededor de él una vesícula, llamada fagosoma, la cual fusionan posteriormente con lisosomas para degradar el antígeno fagocitado.

Es el modo de nutrición, ingestión de materia del exterior (bacterias, otras células, materia inorgánica, etc), como es el caso de algunos organismos unicelulares. Es uno de los medios de transporte grueso que utilizan para su defensa algunas células de los organismos pluricelulares. En organismos multicelulares, este proceso lo llevan a cabo células especializadas, casi siempre con el fin de defender al conjunto del organismo frente a potenciales invasores perjudiciales.

En muchos organismos superiores, la fagocitosis es tanto un medio de defensa ante microorganismos invasores como de eliminación (e incluso reciclaje) de tejidos muertos.


Etapas de la fagocitosis

Pasaje de células al torrente sanguíneo

Se inicia con la adherencia de células al endotelio vascular. Las células irán al lugar de la amenaza. Estas son células especializadas, que pueden ser macrofagos o linfocitos macrofagos o linfocitos . Los mismos serán estimulados para que produzcan citoquinas (IL-1, TNF, IFN).

Quimiotaxis

Es la etapa de movilización y reclutamiento de leucocitos, por medio de la interacción celular, a la zona o tejido lesionado. El fagocito se adhiere levemente a la superficie del endotelio (previamente activado por las citocinas), a través de uniones moleculares de baja afinidad entre receptores en el leucocito y selectinas sobre la superficie endotelial )selectina E, selectina P).

El flujo sanguíneo laminar empuja a los leucocitos así adheridos en dirección de la corriente sanguínea. El fagocito se despega de las interacciones corriente-arriba y sus ligandos de membrana se unen a nuevas selectinas corriente-abajo. El resultado es un movimiento neto a lo largo de la superficie endotelial. Otras moléculas que participan en esta movilización son las moléculas de adhesión vascular (VCAM-1) presentes en el endotelio, cuyos ligandos correspondientes muestran preferencia por los linfocitos T y eosinófilos.

En un punto específico, determinado por la presencia y activación de quimiocinas, los fagocitos movilizados establecen interacciones intercelulares de gran afinidad con el endotelio por medio de integrinas y otros ligandos endoteliales. En especial las moléculas endoteliales LFA-a y CR3 y VLA-4 se adhieren a ligandos específicos sobre los fagocitos, entre ellos VCAM-1 e ICAM-1. La expresión de estos ligandos sobre la superficie del fagocito es regulada por proteínas inflamatorias, como el TNF y la IL-1.







Es en ese punto de movilización lenta cuando los fagocitos, atraídos por gradientes de concentración de las quimiocinas, atraviesan el epitelio vascular hacia el foco de infección patógena.

Adherencia

Otros receptores sobre la membrana de los leucocitos y otros fagocitos actúan como mecanismos de adherencia sobre los microorganismos, sea a productos microbianos específicos o sobre opsoninas del sistema inmune del hospedador.

  • Receptor de manosa. Este receptor tiene afinidad por los componentes de manosa presentes en las glucoproteínas y glucolípidos de las paredes celulares microbianos.
  • Scavenger. Estos receptores se unen directamente a microorganismos y a moléculas de LDL modificadas.
  • CDC14. Es un ligando con preferencia específica al lipopolisacarido presente en ciertas bacterias y está asociado a un receptor tipo Toll.
  • Transmembrana de 7 helices alfa. Es un receptor recientemente descubierto, cuya función está asociada a señales de quimiocinas y ciertos pseptidos microbianos.
  • Receptores para los fragmentos Fc de los anticuerpos opsonizantes IgG2 e IgG3.










Ingestión

La unión a receptores de adherencia promueve señales de comunicación intracelular que resultan en la evaginación de la membrana del fagocito rodeando al receptor y su ligando patogénico. Al rodear por completo al complejo receptor:molécula, la membrana se une en sus extremos y libera al interior de la célula un fagosoma. Esto puede ocurrir en más de un punto de la membrana celular.

Digestión

Una vez que el fagosoma esta en el citoplasma comienza la desintegración del mismo, proceso que se realiza por mecanismos dependientes o independientes de Oxígeno. El primero se da tras activarse rutas metabólicas que consumen oxigeno, lo cual produce la liberación de radicales libres del oxígeno, que son tóxicos para los microorganismos. En el segundo caso es donde intervienen los lisosomas, los cuales se unen al fagosoma conformando un fagolisosoma, y liberando enzimas hidrolíticas que destruirán al antígeno.







Excreción

En el proceso de digestión queda una vesícula que contiene desechos, o el mismo antígeno (Dado que no siempre puede ser desintegrado), por lo que esto debe estar fuera de la célula para traer futuros inconvenientes. Entonces, la forma de deshacerse de estos residuos es mediante la exocitosis.

Un ejemplo de esto se da cuando esputamos (o tosemos), dado que lo que estamos haciendo en verdad es deshacernos de células que contienen un antígeno que no pueden degradar. Dichas células son los macrofagos alveolares, que al entrar una partícula exógena y no poder degradarla se vuelven una amenaza para el organismo, por lo que es conveniente deshacerse de ella.

ESTRUCTURA CELULAR

LA CELULA
La célula es una estructura constituida por tres elementos básicos: membrana plasmática, citoplasma y material genético (ADN).













Posee la capacidad de realizar tres funciones vitales: nutrición, relación y reproducción

MEMBRANA
Se le denomina también plásmica, plasmática, protoplasmática o simplemente membrana. Muchas células tienen por fuera otra membrana mucho más gruesa llamada membrana de secreción o pared celular que es frecuente en las células vegetales. En las células vegetales la membrana y el protoplasma están rodeados por la pared celular y presentan gran cantidad de poros que son de respetables dimensiones por lo que no constituye ninguna barrera para el paso de sustancias al interior de la célula. La función de la pared celular es la de "dar forma y rigidez a la célula".


CITOPLASMA
El citoplasma es el espacio celular comprendido entre la membrana plasmática y la envoltura nuclear. Está constituido por el citosol, el citoesqueleto y los orgánulos celulares.
El citosol (también llamado hialoplasma) es el medio interno del citoplasma. En él flotan el citoesqueleto y los ribosomas.
Está formado por un 85% de agua con un gran contenido de sustancias dispersas en él de forma coloidal (prótidos, lípidos, glúcidos, ácidos nucleicos y nucleótidos así como sales disueltas. Entre sus funciones destacan la realización, gracias a los ribosomas y la síntesis de proteínas, con los aminoácidos disueltos en el citosol. Estas proteínas quedan en el citosol (enzimas, proteínas de reserva energética o proteínas que formarán el citoesqueleto). En él se produce una ingente cantidad de reacciones metabólicas importantes: glucólisis, gluconeogénesis, fermentación láctica, etc.
El citoesqueleto aparece en todas las células eucariotas.
La composición química es una red de fibras de proteína (microfilamentos, filamentos intermedios y microtúbulos).
Sus funciones son mantener la forma de la célula, formar pseudópodos, contraer las fibras musculares, transportar y organizar los orgánulos celulares.












RETICULO ENDOPLASMICO.

Se formó a partir de la membrana fundamental por lo que su ultraestructura será PLP ó en gel. Esta por todo el interior celular, como una red, pero no toca el núcleo. Dentro del retículo hay líquidos intersticiales ( de lo que hay afuera ), por lo que tiene mucha mas superficie de selección la membrana comunica el exterior con el núcleo ( es contiguo ). La membrana enrollada y por dentro. Sostiene todo el interior, protegiendo.

Puede ser de 2 tipos:

  • Liso ( el apenas descrito ).
  • Granular ( cuando el retículo esta muy cerca de unos corpusculosà ribosomas ).










MITOCONDRIAS.

Partículas de forma redondeadas presentes en la mayoría de las células y que siempre están muy cercanas al retículo endoplásmico. La estructura y ultraestructura coinciden por que se ven casi igual en los 2 microscopios. Tienen una membrana PLP o gel ( se originan de la membrana ). Su función depende del contenido: azúcares, ATP y RNA. Se supone que su función es por el RNA y esta es la síntesis proteíca.

Síntesis proteíca: en los ribosomas, que tienen muchas cadena de RNA y están detenidos en el retículo. Hay muchos aminoácidos.

El protoplasma necesita alguna proteína, por lo que una de sus enzimas comunica al núcleo la falta de la proteína X. El núcleo abre el mensaje del DNA para formar la secuencia de aminoácidos que formaran la proteína ( mas de 50 aminoácidos ). El mensaje negativo descifrado por el RNA se va al protoplasma, y este se descifra por un RNA (positiva ).










RIBOSOMAS

Se les conoce también como "corpúsculos de Palade". Son pequeños organelos esféricos que se encuentran unidos al retículo endoplasmático y libres en el citoplasma. Están constituidos químicamente por aproximadamente dos tercios de ácido ribonucleico (ARN). Su función es la de sintetizar proteínas











LISOSOMAS
Organelos redondeados ( de 1/3 del tamaño de los ribosomas ) en casi todas las células. Son originarios de la membrana y su estructura y ultraestructura coinciden. No teniendo estructura específicas, dependen de su contenido: enzimas capaces de romper estructuras químicas ( lisas ). Defienden a la célula destruyen partículas extrañas y la ayudan a realizarpr o procesos digestivos.

COMPLEJO DE GOLGI
Es una formación descubierta por Golgi en los 60. Se determinó como una estructura siempre presente, pero no del mismo tamaño o con la misma posición. Algunas células tienen muy poco y otras mucho. Es originario de la membrana. Por microscopio fotónico se ve como una mancha cerca del núcleo. Esta mancha por miscrocopio electrónico se ve como una vesícula y una cisterna ( son lo mismo pero la vesícula es hacia arriba y la cisterna es hacia abajo ). Contiene secresiones especiales de los tejidos glandulares. Cuando una glándula es no secretada, la presencia del aparato de Golgi, es casí nula (y al revés). Se relaciona con la defensa.










NUCLEO.

El núcleo es la estructura muy importante de la célula. Suelen ser 1/3 del tamañao de la célula. Dirigen las funciones celulares. Muchas veces la división de la célula es por la pérdida de relación y tamaño ente el núcleo y el resto de la célula.

Hay varias formas ( todas las imaginables ). Estrelladas, esfericas, ovoides,etc. Ninguna célula sobrevive sin núcleo, a excepción las células de la córnea de algunos mamíferos y la floema ( vasos conductore de las traqueofitas ).

Generalmente es céntrico ( en el centro de la célula ), pero también hay en otros puntos.

Sus funciones son vitales por ser el controlador celular, por lo que hay una relación directa entre sus funciones y su estructura.

Por microscopio fotónico se ve un contenido no homogeneo limitado por una membran PLP o gel (carioteca) y donde hay partes densas y claras.

Las partes analizadas en electrónico ( ultraestructura ) han dado que:

  • Carioteca: puede ser PLP o gel
  • Jugo nuclear: una sustancia, mezcla de compuestos donde hay azúcares, proteínas enzimáticas, lípidos y ATP.
  • Cromatina: esta formado por cromosomas (estructuras individualizadas), que son los que dirigen el funcionamiento celular.
  • Nucleolos: constituidos por fibras. Forman el huso acromático. Tienen RNA y ATP.

Lo mas importantes descubierto son los cromosomas.






QUIMIOTAXIS EUCARIOTA

QUIMIOTAXIS EUCARIOTA

El mecanismo, a través del cual, las células eucariotas realizan la quimiotaxis es diferente a las de las bacterias. Sin embargo, la sensibilidad de los gradientes químicos sigue siendo un paso crucial en el proceso. Debido a su tamaño, las procariotas no pueden detectar en forma efectiva la concentración de gradientes, por lo cual, estas células buscan y evalúan su entorno a través de una natación constante (pasos consecutivos de natación recta y detenciones, sin un movimiento desplazado). Al contrario de las procariotas, el tamaño de las células eucariotas permiten la posibilidad de detectar el gradiente lo cual resulta en una distribución de receptores dinámica y polarizada. La inducción de esos receptores a través de quimioatrayentes y quimiorepelentes resulta en una migración para alejarse o acercarse a las sustancias quimiotacticas.

















Los niveles de receptores, las vías de las señalización intracelular y los mecanismos efectores, todos representan componentes típicos de los eucariotas. En las células eucariotas unicelulares los movimientos ameboides y los cilios o los flagelos eucarióticos son los principales efectores (p.ej.: Amoeba o Tetrahymena). Algunas células eucariotas cuyo es de vertebrados superiores, así como células inmunes, también se mueven a donde ellas necesitan. Detrás de las células inmunes competentes como (granulocitos, monolitos y linfocitos) se encuentran un grupo grande de células - consideradas propias y fijas de los tejidos - que también son móviles en condiciones especiales, sean estas fisiológicas (p.ej.: mastocitos, fibroblastos, células endoteliales) o patológicas (p.ej.: metástasis )respectivamente.

La quimiotaxis tiene un significado tanto en las fases tempranas de la embriogenesis como en el desarrollo de capas germinales que es dirigido por los gradientes de moléculas de señal.

Motilidad

A diferencia de la movilidad en la quimiotaxis bacteriana, el mecanismo del movimiento físico a través del cual se moviliza la célula eucariota, no está claro. Aparentemente los mecanismos por los cuales los gradientes externos quimiotácticos son detectados y convertidos al gradiente PIP3 intracelular, cuyo resultado del gradiente es la activación de la vía de señalización, culminaría en una polimerización de las actinas de filametos. El crecimiento distal del final del filamento de actina desarrolla conexiones con la superficie interna de la membrana plasmática, a través de diferentes tipos de péptidos dando resultado a una formación de pseudopodos. Los cilios de las células eucariotas también pueden dar como resultado la quimiotaxis, aun cuando en este caso es principalmente una inducción del sistema microtubular del cuerpo basal dependiente de Ca2+ y del rompimiento microtubular de los cilios 9x2+2.

El golpe orquestado de cientos de cilias es sincronizado por un sistema submembranoso construido entre los cuerpos basales. Los detalles de la vía de señalización aún no están totalmente aclarados.






Respuestas migratorias relacionadas con quimiotaxis

Aunque la quimiotaxis es la forma de migración más frecuentemente estudiada hay muchas otras formas de movilidad a nivel celular.

  • Quimioquinesis: también inducida por moléculas de la fase liquida del medio ambiente rodeante. Sin embargo la respuesta obtenida no es vectorial. Ni la frecuencia ni la amplitud de este movimiento tiene carácter direccional, los componentes de este comportamiento más bien sirven para percibir el medioambiente (palpándolo), más que la búsqueda de la migración entre dos diferentes puntos.
  • Haptotaxis: el gradiente de los quimioatrayentes es expresado sobre una superficie o unido a esta, en contraste a la vía clásica de la quimiotaxis cuando el gradiente se desarrolla en un espacio soluble. La principal superficie biológicamente activa del mecanismo haptotaxico es la matriz extracelular (ECM), la presencia de ligandos unidos es responsable de la inducción de la migración y angiogénesis transendotelial.
  • Necrotaxis: encarna un tipo especial de quimiotaxis en el cual la molécula quimioatrayente esta liberada de la célula necrotica o apoptotica (muerta). Dependiendo del carácter químico de las sustancias liberadas, la necrotaxis puede acumular o rechazar células, lo que subraya el significado fisiopatológico de este fenómeno.

QUIMIOTAXIS BACTERIANAS

QUIMIOTAXIS BACTERIANA

Algunas bacterias como la E. coli poseen muchos flagelos por célula (habitualmente entre 4 y 10). Estas pueden rotar en dos sentidos:

  1. Rotación en el sentido contrario a las agujas del reloj, lo cual alinea los flagelos en un haz de rotación simple, causando que la bacteria nade en línea recta.
  2. Rotación en el sentido de las agujas del reloj, dobla el flagelos en un haz haciendo que cada flagelo apunte en dirección diferente causando detención del movimiento y dejando la bacteria en un lugar.

La dirección de rotación es dada por un observador externo, mirando desde abajo hacia la célula

Conducta

El movimiento total de la bacteria es el resultado de la alternancia entre las fases de detención y natatorias. Si alguien observa la bacteria nadando en un entorno uniforme, el movimiento se ve como un paseo arbitrario, con un nado en línea recta interrumpido con detenciones arbitrarias que reorientan a la bacteria. Las bacterias como E. coli son incapaces de elegir la dirección en la cual nadan, y son incapaces de nadar en una línea recta por más de algunos segundos, debido a la difusión rotatoria. En otras palabras, las bacterias olvidan la dirección a la cual se dirigen. Dadas estas limitaciones, es extraordinario que las bacterias puedan dirigir sus movimientos y encontrar lugares favorables de alta concentración de atrayentes (habitualmente alimentos) y evadir los repelentes (habitualmente venenos).

En la presencia de gradientes químicos, la bacteria realiza quimiotaxis o dirige su movilidad arbitraria basada en el gradiente. Si la bacteria siente que su movimiento va en la dirección correcta (hacia el atrayente y lejos del repelente) mantendrá su natación en una línea recta por un tiempo más largo antes de detenerse. Si su movimiento va en una mala dirección, se detendrá más rápido e intentará una nueva dirección al azar (aleatoria). En otras palabras, una bacteria como E. coli usa sus sensibilidad temporal para decidir si la vida está mejorando o empeorando. De esta manera si encuentra la ubicación con mayor concentración de atrayentes (usualmente la fuente) es mejor. Incluso a altas concentraciones es capaz de distinguir hasta las más pequeñas diferencias en concentraciones (atrayentes/repelentes). La función de escapar de los repelentes funciona con la misma eficiencia.

Parece considerable que este movimiento uniforme con propósito, es el resultado de una simple elección entre dos métodos de movimientos aleatorios, llamados detención y natación línea recta. De hecho, las respuestas quimiotácticas como el olvido de la dirección y la selección del movimiento, se parecen a las habilidades de tomar decisiones, en las superiores formas superiores de vida, que procesan los datos sensoriales con cerebros.

La naturaleza helical del filamento flagelar individual es critico, para que este movimiento ocurra. Así, como la proteína que forma el filamento flagelar, el flagelo es similar entre todas las bacterias flageladas. Los vertebrados parecen tener ventaja en este hecho al poseer un inmunoreceptor (TLR5) desigñado para reconocer la proteína conservada.

Así como hay muchas instancias en la biología, hay bacterias que no siguen estas reglas. Muchas bacterias, como es el Vidrio, son monoflageladas y tienen este único flagelo en un polo de la célula. Su método de quimiotaxis es diferente. Otros poseen un solo flagelo que se mantiene dentro de la pared de la célula. Esas bacterias se mueven a través de un rodamiento de toda la célula, lo cual se parece al movimiento del sacacorchos.

Regulación de los flagelos

Las proteínas CheW y CheA se unen al receptor. La ausencia de atrayentes causa una auto fosforilación en la histidinaquinasa, CheA, a través del único residuo de histidina altamente conservado. CheA, a la vez transfiere grupos forforilados para conservar residuos de aspartato en respuesta de los reguladores CheB y CheY [nota: CheA es una histidinaquinasa y no transfiere activamente grupos forforilados. La respuesta reguladora de CheB, toma el grupo fosforilado de CheA]. Este mecanismo de traducción de señal se llama “Two Component System” (Sistema de dos componentes) y es la forma común de la traducción de señal en las bacterias. CheY induce la detención del movimiento a través de la interacción con la proteína flagelar-interruptora proteína FliM, induciendo un cambio en el sentido de la rotación del flagelo, desde el sentido contrario a las agujas del reloj hacia el sentido de las agujas del reloj. El cambio del estado de la rotación de un solo flagelo es capaz de interrumpir el haz completo bulto y causar una vibración.

Transducción de la señal

Los gradientes químicos son detectados a través de muchos receptores transmembranales llamados "methyl accepting chemotaxis proteins" (Proteínas quemotácticas que aceptan grupos metilo) (MCPs) las cuales varían en las moléculas que ellas detectan. Estos receptores puede

n unir atrayentes o repelentes directa o indirectamente a través de la interacción con proteínas del espacio periplasmatico. Las señales de estos receptores son transmitidas a través de la membrana plasmática hacia el citosol, donde las Che proteínas son activadas. Las Che proteínas cambian las frecuencias de avance y giro, y alteran los receptores















Regulación de receptores

CheB, una vez activado por CheA, actúa como una metilesterasa, removiendo grupos metilo desde los residuos de glutamato en el lado citosólico (intracelular) del receptor. Esto trabaja en forma antagonista con la CheR, una metiltransferasa que adjunta residuos de metilo a los mismos residuos de glutamato. Mientras más residuos metilo se unen al receptor, mas aumenta la sensibilidad del receptor.

Una vez se detecta presencia de atrayente, se inhibe la autofosforilación de CheA, y por tanto de CheB, por lo que se induce una desmetilación del receptor. Del mismo modo, la regulación por retroalimentación (feedback) ajusta la metilación continuamente a los niveles ambientales, manteniendo sensibilidad para los más leves cambios del medio ambiente, incluso con concentraciones químicas restantes extremadamente bajas. Esta regulación permite a la bacteria, recordar las concentraciones químicas desde el pasado reciente y compararlas con aquellas que corrientemente experimenta (es decir, compara la presencia de señales extracelulares con la presencia de las mismas momentos antes, la cual es recordada por el nivel de metilación). Este “conocimiento” le da la posibilidad de hacer el viaje contra o a favor del gradiente. No obstante, el sistema de metilación sólo no puede explicar la amplia gama de sensibilidad que las bacterias poseen hacia los gradientes químicos. Mecanismos reguladores adicionales, como la agrupación de receptores y la interacción receptor-receptor también modula la vía de señalización




sábado, 17 de julio de 2010

CARACTERÍSTICAS DE LA CELULA

TAMAÑO Y FORMA DE LA CELULA

El tamaño y la forma de las células depende de sus elementos más periféricos (por ejemplo, la pared, si la hubiere) y de su andamiaje interno (es decir, el citoesqueleto). Además, la competencia por el espacio tisular provoca una morfología característica: por ejemplo, las células vegetales, poliédricas in vivo, tienden a ser esféricas in vitro.[17] Incluso pueden existir parámetros químicos sencillos, como los gradientes de concentración de una sal, que determinen la aparición de una forma compleja.[18]
En cuanto al tamaño, la mayoría de las células son microscópicas, es decir, no son observables a simple vista. A pesar de ser muy pequeñas (un milímetro cúbico de sangre puede contener unos cinco millones de células),[12] el tamaño de las células es extremadamente variable. La célula más pequeña observada, en condiciones normales, corresponde a Mycoplasma genitalium, de 0,2 μm, encontrándose cerca del límite teórico de 0,17 μm.[19] Existen bacterias con 1 y 2 μm de longitud. Las células humanas son muy variables: hematíes de 7 micras, hepatocitos con 20 micras, espermatozoides de 53 μm, óvulos de 150 μm e, incluso, algunas neuronas de en torno a un metro. En las células vegetales los granos de polen pueden llegar a medir de 200 a 300 μm y algunos huevos de aves pueden alcanzar entre 1 (codorniz) y 7 cm (avestruz) de diámetro. Para la viabilidad de la célula y su correcto funcionamiento siempre se debe tener en cuenta la relación superficie-volumen.[13] Puede aumentar considerablemente el volumen de la célula y no así su superficie de intercambio de membrana lo que dificultaría el nivel y regulación de los intercambios de sustancias vitales para la célula.

Respecto de su forma, las células presentan una gran variabilidad, e, incluso, algunas no la poseen bien definida o permanente. Pueden ser: fusiformes (forma de huso), estrelladas, prismáticas, aplanadas, elípticas, globosas o redondeadas, etc. Algunas tienen una pared rígida y otras no, lo que les permite deformar la membrana y emitir prolongaciones citoplasmáticas (pseudópodos) para desplazarse o conseguir alimento.



















Hay células libres que no muestran esas estructuras de desplazamiento pero poseen cilios o flagelos, que son estructuras derivadas de un orgánulo celular (el centrosoma) que dota a estas células de movimiento.[1] De este modo, existen multitud de tipos celulares, relacionados con la función que desempeñan; por ejemplo:

* Células contráctiles que suelen ser alargadas, como las fibras musculares.
* Células con finas prolongaciones, como las neuronas que transmiten el impulso nervioso.
* Células con microvellosidades o con pliegues, como las del intestino para ampliar la superficie de contacto y de intercambio de sustancias.
* Células cúbicas, prismáticas o aplanadas como las epiteliales que recubren superficies como las losas de un pavimento

LOS TIPS DE LA FUNCION CELULAR

FUNCIONES

1. Cuáles son las funciones más importantes que realizan las células eucariotas: cómo se relacionan con su entorno, cómo se reproducen y cómo se nutren.

2. En cuanto a las funciones de relación conocerás algunos aspectos básicos sobre las modalidades de comunicación entre las células y sus posibles respuestas.

3. En las funciones de reproducción aprenderás los aspectos fundamentales del ciclo celular, con sus diferentes fases. Recordarás qué ocurre en cada una de las fases de la mitosis y para qué sirve este proceso.


4. Comprenderás que para la reproducción sexual de los organismos es necesaria la meiosis, y que ésta puede ocurrir en diferentes momentos de su ciclo biológico. Recordarás cuáles son las fases de la meiosis y qué ocurre en cada una de ellas.

5. Al abordar la nutrición de la célula, descubrirás cómo absorben las pequeñas moléculas, cómo ingieren las partículas y macromoléculas, cómo digieren a éstas últimas hasta reducirlas a pequeños nutrientes.

6. Comprenderás cómo los nutrientes participan en diversas reacciones químicas en las que tienen lugar intercambios energéticos, y que en algunos se producen sustancias residuales que es necesario eliminar.


mARYCRUZ